Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiang-Hai Guo ${ }^{\text {a }}$ and Qing-Xian Wang ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Pharmaceuticals \& Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, and ${ }^{\mathbf{b}}$ Tianjin Wuqing Beiyang Chemicals Factory, Tianjin 301715, People's Republic of China

Correspondence e-mail:
kwoxhfly@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.111$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 1H-1,2,4-triazole-3-carboxylate

The title compound, $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$, possesses a planar triazole ring and contains two intermolecular hydrogen bonds in the crystal structure.

Comment

Ribavirin (1-d-ribofuranosyl-1,2,4-triazole-3-carboxamide) (Vo et al., 2003) is a nucleoside analogue that has demonstrated efficacy in treating viral diseases both as monotherapy 14 (respiratory syncytial virus) and in combination therapy with interferon alpha (hepatitis C virus). Methyl $1 H-1,2,4-$ triazole-3-carboxylate, (I) (Lin \& Liu, 1984), has been used as a starting material for ribavirin (Ramasamy et al., 2000). The structure of (I) (Fig. 1) displays two types of intermolecular hydrogen-bonding interactions, $\mathrm{O} 1 \cdots \mathrm{H} 1-\mathrm{C} 1$ and $\mathrm{N} 1 \cdots \mathrm{H} 3-$ N3. The plane-to-plane distance of two molecules is 3.26 (2) A. Molecules lying in tha same plane are centrosymmetric and molecules in different planes are related by mirror symmetry.

(I)

Experimental

5-Amino-1,2,4-triazole-3-carboxylic acid (100 g) and methanol $(500 \mathrm{ml})$ were placed in a 21 three-necked flask with mechanical stirring. To the reaction mixture was slowly added 98% sulfuric acid $(250 \mathrm{~g})$ with stirring, and the mixture was heated under reflux for 16 h . The reaction mixture was cooled to 278 K for 10 h to afford a light-yellow wet solid. This solid was mixed with 98% sulfuric acid $(58 \mathrm{~g})$ and water (350 ml), and the resulting mixture cooled to $273-$ 274 K. 30% aqueous sodium nitrite (150 g) was added slowly and the reaction allowed to continue for a further 2 h to give a grey solid. The grey solid and methanol (350 ml) were then placed in a 11 flask with stirring and slowly heated to 313 K . When all the diazonium salt had been decomposed by methanol, the reaction solution was filtered and the filtrate was cooled to 283 K to afford the product, (I). Recrystallization from water and methanol gave 49 g of (I) (yield 49\%).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2} \\
& M_{r}=127.11 \\
& \text { Monoclinic, } P 2_{2} / n \\
& a=3.9737(9) \AA \AA \\
& b=18.160(4) \AA \AA \\
& c=8.1865(19) \AA \\
& \beta=102.596(4){ }^{\circ} \\
& V=576.5(2) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 18 July 2005
Accepted 7 September 2005
Online 14 September 2005

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.960, T_{\text {max }}=0.976$
3192 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.111$
$S=1.04$
1168 reflections
87 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

O1-C3	$1.2008(19)$	$\mathrm{N} 3-\mathrm{C} 1$	$1.318(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.323(2)$	$\mathrm{N} 3-\mathrm{H} 3$	$0.95(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.353(2)$	$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{~N} 2-\mathrm{C} 2$	$1.318(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
$\mathrm{~N} 2-\mathrm{N} 3$	$1.347(2)$		
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{H} 3$	$130.6(15)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	124.8
$\mathrm{~N} 2-\mathrm{N} 3-\mathrm{H} 3$	$119.0(15)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.13(14)$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{H} 1$	124.8	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 A$	109.5
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 1$	$0.12(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-179.58(15)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	$0.14(19)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	$3.1(3)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	$-0.03(18)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	$-176.59(14)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.57	$3.138(2)$	120
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{~N}^{\mathrm{i}}$	$0.95(3)$	$1.88(3)$	$2.822(2)$	$175(2)$

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$.
C-bound H atoms were positioned geometrically and refined in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The H atom bound to N 3 was refined with the distance restraint $\mathrm{N}-\mathrm{H}=0.95$ (3) \AA.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

1168 independent reflections 846 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-2 \rightarrow 4$
$k=-22 \rightarrow 21$
$l=-10 \rightarrow 10$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0566 P)^{2}\right. \\
& +0.0868 P]
\end{aligned}
$$

$$
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$

Figure 1
A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A packing diagram of (I). Dashed lines represent intermolecular hydrogen-bonding interactions.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Lin, T.-S. \& Liu, M.-C. (1984). Tetrahedron Lett. 25, 611-612.
Ramasamy, K. S., Tam, R. C., Bard, J. \& Averett, D. R. (2000). J. Med. Chem. 43, 1019-1028.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Vo, N. V., Young, K.-C. \& Lai, M. M. C. (2003). Biochemistry, 42, 10462-10471.

